If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X-165=0
a = 1; b = 12; c = -165;
Δ = b2-4ac
Δ = 122-4·1·(-165)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{201}}{2*1}=\frac{-12-2\sqrt{201}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{201}}{2*1}=\frac{-12+2\sqrt{201}}{2} $
| 3x+6/5=6x+3/5 | | F(x)=4x2-8x-5 | | 4(12x+3)=3x+12−x | | 12+2x=80 | | 2t+7=13 | | 2x=13x+5 | | 2/3+x/54/15= | | 7x-14=4x+14 | | x+2=6,x=6-2=4 | | 15=30t+9 | | 29.5-5.5x=7(3x+3.5) | | 4c+16=72 | | 5x(x+8)=-7 | | 4x-9=2x+x | | 4x=20+4 | | 3b-9=2 | | 53=8t+5 | | 0.19x+0.5(x-1)=0.01(3x-1) | | -3+k=12 | | 3(l-7)+4(8-2l)-7=-4(1+2)-6 | | 8/5x+90=160 | | 5.1+y=8 | | 4x+3x=5x+12 | | 2y-1=+11 | | 62.5-0.156x=20 | | 5/3x+20=80 | | (2x+1)(4x-1)=12x-3 | | k+2k+3k+4k+5k=1 | | 6x-4x=3x-9 | | 5(k+11)+2(k-3)-7=2(k-4 | | 3x+72x-19=180 | | (3x-5)(8-7x)=0 |